Nonlinear Schrödinger equation on metric graphs COMPLEX Doctoral School

Damien Galant

CERAMATHS/DMATHS

Université Polytechnique Hauts-de-France

Département de Mathématique

Université de Mons F.R.S.-FNRS Research Fellow

Tuesday 15 November 2022

1 Metric graphs

2 Ground states for the nonlinear Schrödinger equation

A metric graph is made of vertices

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

• *metric* graphs: the length of edges are important.

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

metric graphs: the length of edges are important.

the edges going to infinity are halflines and have *infinite length*.

 $--\infty$

The halfline

The 5-star graph

A metric graph G with three edges e_0 (length 5), e_1 (length 4) et e_2 (length 3)

A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) et e_2 (length 3), a function $f : \mathcal{G} \to \mathbb{R}$

A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) et e_2 (length 3), a function $f : \mathcal{G} \to \mathbb{R}$, and the three associated real functions

A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) et e_2 (length 3), a function $f : \mathcal{G} \to \mathbb{R}$, and the three associated real functions

$$\int_{\mathcal{G}} f \, \mathrm{d}x \stackrel{\text{\tiny def}}{=} \int_{0}^{5} f_{0}(x) \, \mathrm{d}x + \int_{0}^{4} f_{1}(x) \, \mathrm{d}x + \int_{0}^{3} f_{2}(x) \, \mathrm{d}x$$

Why studying metric graphs?

Modeling structures where only one spatial direction is important.

A \ll fat graph \gg and the underlying metric graph

• A *boson*¹ is a particle with integer spin.

¹Here we will consider composite bosons, like atoms.

- A *boson*¹ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a *unique lowest energy quantum state*.

¹Here we will consider composite bosons, like atoms.

- A *boson*¹ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a *unique lowest energy quantum state*.
- This phenomenon is known at Bose-Einstein condensation.

¹Here we will consider composite bosons, like atoms.

- A *boson*¹ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a *unique lowest energy quantum state*.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: *macroscopic quantum phenomenon!*

¹Here we will consider composite bosons, like atoms.

- A *boson*¹ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a *unique lowest energy quantum state*.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: *macroscopic quantum phenomenon!*
- Since 2000: emergence of *atomtronics*, which studies circuits guiding the propagation of ultracold atoms.

¹Here we will consider composite bosons, like atoms.

• We model the circuit in which the condensate is confined by a metric graph \mathcal{G} .

- We model the circuit in which the condensate is confined by a metric graph *G*.
- We want to know what will be the common quantum state of a condensate confined in *G* for a given "quantity of matter" μ.

- We model the circuit in which the condensate is confined by a metric graph G.
- We want to know what will be the common quantum state of a condensate confined in *G* for a given "quantity of matter" μ.
- We work on the space

$$H^1_\mu(\mathcal{G}) = \Big\{ u: \mathcal{G} o \mathbb{R} \ \Big| \ u ext{ is continuous}, u, u' \in L^2(\mathcal{G}), \int_{\mathcal{G}} |u|^2 = \mu \Big\}$$

- We model the circuit in which the condensate is confined by a metric graph G.
- We want to know what will be the common quantum state of a condensate confined in *G* for a given "quantity of matter" μ.
- We work on the space

$$\mathcal{H}^1_\mu(\mathcal{G}) = \Big\{ u: \mathcal{G} o \mathbb{R} \ \Big| \ u ext{ is continuous, } u, u' \in L^2(\mathcal{G}), \int_{\mathcal{G}} |u|^2 = \mu \Big\}$$

and we consider the energy minimization problem

$$\inf_{u\in H^1_{\mu}(\mathcal{G})}\frac{1}{2}\int_{\mathcal{G}}|u'|^2-\frac{1}{p}\int_{\mathcal{G}}|u|^p,$$

where 2

- We model the circuit in which the condensate is confined by a metric graph G.
- We want to know what will be the common quantum state of a condensate confined in *G* for a given "quantity of matter" μ.
- We work on the space

$$\mathcal{H}^1_\mu(\mathcal{G}) = \Big\{ u: \mathcal{G} o \mathbb{R} \ \Big| \ u ext{ is continuous}, u, u' \in L^2(\mathcal{G}), \int_{\mathcal{G}} |u|^2 = \mu \Big\}$$

and we consider the energy minimization problem

$$\inf_{u\in H^1_{\mu}(\mathcal{G})}\frac{1}{2}\int_{\mathcal{G}}|u'|^2-\frac{1}{p}\int_{\mathcal{G}}|u|^p,$$

where 2 (Bose-Einstein: <math>p = 4).

Metric graphs

Infimum vs minimum

Then

$$\inf_{\mathbb{R}} f = 0$$

but the infimum is not attained (i.e. is not a minimum).

If a function $u \in H^1_\mu(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda > 0$ such that u is a solution of the differential system

If a function $u \in H^1_\mu(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda > 0$ such that u is a solution of the differential system

 $\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \end{cases}$

If a function $u \in H^1_\mu(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda > 0$ such that u is a solution of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{ for every vertex } v \text{ of } \mathcal{G}, \end{cases}$$

If a function $u \in H^1_\mu(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda > 0$ such that u is a solution of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{ for every vertex } v \text{ of } \mathcal{G}, \\ \sum_{e \succ v} \frac{du}{dx_e}(v) = 0 & \text{ for every vertex } v \text{ of } \mathcal{G}, \end{cases}$$

where the symbol $e \succ V$ means that the sum ranges of all edges of vertex V and where $\frac{du}{dx_e}(V)$ is the outgoing derivative of u at V.

If a function $u \in H^1_\mu(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda > 0$ such that u is a solution of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{for every vertex } v \text{ of } \mathcal{G}, \\ \sum_{e \succ v} \frac{du}{dx_e}(v) = 0 & \text{ for every vertex } v \text{ of } \mathcal{G}, \end{cases}$$
(NLS)

where the symbol $e \succ V$ means that the sum ranges of all edges of vertex V and where $\frac{du}{dx_e}(V)$ is the outgoing derivative of u at V.

The real line: $\mathcal{G} = \mathbb{R}$

$$\mathcal{S}_{\mu}(\mathbb{R}) = \left\{ \pm \varphi_{\mu}(\mathsf{x} + \mathsf{a}) \mid \mathsf{a} \in \mathbb{R}
ight\}$$

where the *soliton* φ_{μ} is the unique strictly positive, even, and of mass μ solution to an equation of the form

$$u'' + |u|^{p-2}u = \lambda u.$$

The real line: $\mathcal{G} = \mathbb{R}$

$$\mathcal{S}_{\mu}(\mathbb{R}) = \left\{ \pm \varphi_{\mu}(\mathsf{x} + \mathsf{a}) \mid \mathsf{a} \in \mathbb{R}
ight\}$$

where the *soliton* φ_{μ} is the unique strictly positive, even, and of mass μ solution to an equation of the form

$$u'' + |u|^{p-2}u = \lambda u.$$

Metric graphs

The real line: $\mathcal{G} = \mathbb{R}$

$$\mathcal{S}_{\mu}(\mathbb{R}) = \left\{ \pm arphi_{\mu}(\mathsf{x}+\mathsf{a}) \mid \mathsf{a} \in \mathbb{R}
ight\}$$

where the *soliton* φ_{μ} is the unique strictly positive, even, and of mass μ solution to an equation of the form

$$u'' + |u|^{p-2}u = \lambda u.$$

The halfline: $\mathcal{G} = \mathbb{R}^+ = [0, +\infty[$

$$\mathcal{S}_{\mu}(\mathbb{R}^+) = \left\{\pm arphi_{2\mu}(x)_{|\mathbb{R}^+}
ight\}$$

Solutions are *half-solitons*: no more translations!

Metric graphs

Ground states

The positive solution on the 3-star graph

Metric graphs

Ground states

The positive solution on the 5-star graph

The « ground state » energy level is given by

$$c_{\mu}(\mathcal{G}) = \inf_{u \in H^1_{\mu}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}} |u'|^2 - \frac{1}{p} \int_{\mathcal{G}} |u|^p.$$

The « ground state » energy level is given by

$$c_{\mu}(\mathcal{G}) = \inf_{u \in H^1_{\mu}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}} |u'|^2 - \frac{1}{p} \int_{\mathcal{G}} |u|^p.$$

• A ground state is a function $u \in H^1_{\mu}(\mathcal{G})$ with level $c_{\mu}(\mathcal{G})$. It is a solution of the differential system (NLS).

The « ground state » energy level is given by

$$c_{\mu}(\mathcal{G}) = \inf_{u \in H^1_{\mu}(\mathcal{G})} rac{1}{2} \int_{\mathcal{G}} |u'|^2 - rac{1}{p} \int_{\mathcal{G}} |u|^p.$$

- A ground state is a function $u \in H^1_{\mu}(\mathcal{G})$ with level $c_{\mu}(\mathcal{G})$. It is a solution of the differential system (NLS).
- We can also consider the minimal level attained by the solutions of (NLS):

$$\sigma_{\mu}(\mathcal{G}) = \inf_{u \in \mathcal{S}_{\mu}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}} |u'|^2 - \frac{1}{p} \int_{\mathcal{G}} |u|^p.$$

The « ground state » energy level is given by

$$c_{\mu}(\mathcal{G}) = \inf_{u \in H^1_{\mu}(\mathcal{G})} rac{1}{2} \int_{\mathcal{G}} |u'|^2 - rac{1}{p} \int_{\mathcal{G}} |u|^p.$$

- A ground state is a function $u \in H^1_{\mu}(\mathcal{G})$ with level $c_{\mu}(\mathcal{G})$. It is a solution of the differential system (NLS).
- We can also consider the minimal level attained by the solutions of (NLS):

$$\sigma_{\mu}(\mathcal{G}) = \inf_{u \in \mathcal{S}_{\mu}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}} |u'|^2 - \frac{1}{p} \int_{\mathcal{G}} |u|^p.$$

A minimal action solution of the problem is a solution u ∈ H¹_μ(G) of the differential problem (NLS) of level σ_μ(G).

An example: star graphs

The level of the mass μ soliton on the real line is given by

$$s_{\mu}=rac{1}{2}\int_{\mathcal{G}}|arphi_{\mu}|^2-rac{1}{p}\int_{\mathcal{G}}|arphi_{\mu}|^p.$$

For a *N*-star graph with $N \ge 3$, we have

$$m{s}_{\mu}=m{c}_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=rac{N}{2}m{s}_{\mu}.$$

Four cases

An analysis shows that four cases are possible:

- A1) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and neither infima is attained;
- B1) $c_{\mu}(\mathcal{G}) < \sigma_{\mu}(\mathcal{G})$, $\sigma_{\mu}(\mathcal{G})$ is attained but not $c_{\mu}(\mathcal{G})$;
- B2) $c_{\mu}(\mathcal{G}) < \sigma_{\mu}(\mathcal{G})$ and neither infima is attained.

Four cases

An analysis shows that four cases are possible:

- A1) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and neither infima is attained;
- B1) $c_{\mu}(\mathcal{G}) < \sigma_{\mu}(\mathcal{G})$, $\sigma_{\mu}(\mathcal{G})$ is attained but not $c_{\mu}(\mathcal{G})$;
- B2) $c_{\mu}(\mathcal{G}) < \sigma_{\mu}(\mathcal{G})$ and neither infima is attained.

Question

Are those four cases really possible for metric graphs?

Answer to the question

Theorem (De Coster, Dovetta, G., Serra (to appear))

For every $p \in]2, 6[$, every $\mu > 0$, and every choice of alternative between A1, A2, B1, B2, there exists a metric graph \mathcal{G} where this alternative occurs.

References

The graphs for cases B1 and B2 \square

Thanks for your attention!

Overviews of the subject

- Adami R., Serra E., Tilli P. Nonlinear dynamics on branched structures and networks https://arxiv.org/abs/1705.00529 (2017)
- Kairzhan A., Noja D., Pelinovsky D. *Standing waves on quantum graphs* J. Phys. A: Math. Theor. 55 243001 (2022)

References

Thanks!	References □■	The graphs for cases B1 and B2 □□
N /1 1		

Videos

- Adami R. Ground states of the Nonlinear Schrodinger Equation on Graphs: an overview (Lisbon WADE) https://www.youtube.com/watch?v=G-FcnRVvoos (2020)
- Carl Wieman Nobel Lecture https: //www.nobelprize.org/prizes/physics/2001/wieman/lecture/ (2001)
- Eric Cornell Nobel Lecture https: //www.nobelprize.org/prizes/physics/2001/cornell/lecture (2001)
- Wolfgang Ketterle Nobel Lecture https://www.nobelprize.org/p rizes/physics/2001/ketterle/lecture/ (2001)

Thanks! □	References	The graphs for cases B1 and B2 ■

Case B1

Thanks!	References	The graphs for cases B1 and B2 ■

Case B2

