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Metric graphs Ground states

What is a metric graph?

A metric graph is made of vertices

and of edges joining the vertices or
going to infinity.

∞

∞

∞

metric graphs: the length of edges are important.

the edges going to infinity are halflines and have infinite length.
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Constructions based on halflines

∞
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Functions defined on metric graphs

G
ff0

e0

f1

e1

f2
e2

1 2 3 4 5 6

10

20

f0

f1

f2

A metric graph G with three edges e0 (length 5), e1 (length 4) et e2 (length 3)

, a
function f : G → R, and the three associated real functions

∫
G

f dx def=
∫ 5

0
f0(x) dx +

∫ 4

0
f1(x) dx +

∫ 3

0
f2(x) dx
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Why studying metric graphs?

Modeling structures where only one spatial direction is important.

∞
∞

∞

A « fat graph » and the underlying metric graph
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An application: atomtronics

A boson1 is a particle with integer spin.

When identical bosons are cooled down to a temperature very close
to absolute zero, they occupy a unique lowest energy quantum state.
This phenomenon is known at Bose-Einstein condensation.
This is really remarkable: macroscopic quantum phenomenon!
Since 2000: emergence of atomtronics, which studies circuits guiding
the propagation of ultracold atoms.

1Here we will consider composite bosons, like atoms.
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The minimization problem

We model the circuit in which the condensate is confined by a metric
graph G.

We want to know what will be the common quantum state of a
condensate confined in G for a given “quantity of matter” µ.
We work on the space

H1
µ(G) =

{
u : G → R

∣∣∣ u is continuous, u, u′ ∈ L2(G),
∫

G
|u|2 = µ

}
and we consider the energy minimization problem

inf
u∈H1

µ(G)

1
2

∫
G

|u′|2 − 1
p

∫
G

|u|p,

where 2 < p < 6 (Bose-Einstein: p = 4).
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Infimum vs minimum

−10 −5 5 10

1

2

3

4

5

f (x) = 1
|x |

Then
inf
R

f = 0

but the infimum is not attained (i.e. is not a minimum).
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The differential system

If a function u ∈ H1
µ(G) minimizes the energy functional under the mass

constraint, there exists a constant λ > 0 such that u is a solution of the
differential system



u′′ + |u|p−2u = λu on each edge e of G,

u is continuous for every vertex v of G,∑
e≻v

du
dxe

(v) = 0 for every vertex v of G,

(NLS)

where the symbol e ≻ v means that the sum ranges of all edges of vertex
v and where du

dxe
(v) is the outgoing derivative of u at v.
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The real line: G = R

∞ ∞

Sµ(R) =
{

±φµ(x + a)
∣∣∣ a ∈ R

}
where the soliton φµ is the unique strictly positive, even, and of mass µ
solution to an equation of the form

u′′ + |u|p−2u = λu.
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The halfline: G = R+ = [0, +∞[

∞

Sµ(R+) =
{

±φ2µ(x)|R+

}
Solutions are half-solitons: no more translations!
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The positive solution on the 3-star graph
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The positive solution on the 5-star graph
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A continuous family of solutions on the 4-star graph
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Two energy levels

The « ground state » energy level is given by

cµ(G) = inf
u∈H1

µ(G)

1
2

∫
G

|u′|2 − 1
p

∫
G

|u|p.

A ground state is a function u ∈ H1
µ(G) with level cµ(G). It is a

solution of the differential system (NLS).
We can also consider the minimal level attained by the solutions of
(NLS):

σµ(G) = inf
u∈Sµ(G)

1
2

∫
G

|u′|2 − 1
p

∫
G

|u|p.

A minimal action solution of the problem is a solution u ∈ H1
µ(G) of

the differential problem (NLS) of level σµ(G).
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An example: star graphs

The level of the mass µ soliton on the real line is given by

sµ = 1
2

∫
G

|φ′
µ|2 − 1

p

∫
G

|φµ|p.

For a N-star graph with N ≥ 3, we have

sµ = cµ(G) < σµ(G) = N
2 sµ.

Damien Galant NLS on metric graphs 17
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Four cases

An analysis shows that four cases are possible:
A1) cµ(G) = σµ(G) and both infima are attained;
A2) cµ(G) = σµ(G) and neither infima is attained;
B1) cµ(G) < σµ(G), σµ(G) is attained but not cµ(G);
B2) cµ(G) < σµ(G) and neither infima is attained.

Question
Are those four cases really possible for metric graphs?

Damien Galant NLS on metric graphs 18
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Answer to the question

Theorem (De Coster, Dovetta, G., Serra (to appear))
For every p ∈ ]2, 6[, every µ > 0, and every choice of alternative between
A1, A2, B1, B2, there exists a metric graph G where this alternative
occurs.

Damien Galant NLS on metric graphs 19



Thanks! References The graphs for cases B1 and B2

Thanks for your attention!

Damien Galant NLS on metric graphs 1



Thanks! References The graphs for cases B1 and B2

Overviews of the subject

Adami R., Serra E., Tilli P. Nonlinear dynamics on branched structures
and networks https://arxiv.org/abs/1705.00529 (2017)

Kairzhan A., Noja D., Pelinovsky D. Standing waves on quantum
graphs J. Phys. A: Math. Theor. 55 243001 (2022)
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Videos

Adami R. Ground states of the Nonlinear Schrodinger Equation on
Graphs: an overview (Lisbon WADE)
https://www.youtube.com/watch?v=G-FcnRVvoos (2020)

Carl Wieman Nobel Lecture https:
//www.nobelprize.org/prizes/physics/2001/wieman/lecture/
(2001)

Eric Cornell Nobel Lecture https:
//www.nobelprize.org/prizes/physics/2001/cornell/lecture
(2001)

Wolfgang Ketterle Nobel Lecture https://www.nobelprize.org/p
rizes/physics/2001/ketterle/lecture/ (2001)
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Case B1

∞
v1

L1

v2

L2

v3

L3

v4

L4

v5

L5

v6

L6

· · ·· · ·· · ·· · ·· · ·· · ·· · ·

· · ·
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Case B2

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ ∞ ∞

v0 v1 v2 v3v−1v−2v−3

L1 L2 L3L−1L−2L−3

B

R−3 R−2 R−1 R0 R1 R2 R3
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