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Metric graphs

Ground states for the nonlinear Schrédinger equation
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What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or
going to infinity.

) | A \ 0

m metric graphs: the length of edges are important.
m the edges going to infinity are halflines and have infinite length.
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Functions defined on metric graphs
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A metric graph G with three edges ey (length 5), e; (length 4) et e; (length 3)
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A metric graph G with three edges ey (length 5), e; (length 4) et e, (length 3), a
function f : G — R, and the three associated real functions
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Functions defined on metric graphs

f 0
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A metric graph G with three edges ey (length 5), e; (length 4) et e, (length 3), a
function f : G — R, and the three associated real functions

5 4 3
/fdxdéf/ fb(x)dx—i—/ fl(x)dx—i-/ fa(x) dx
g 0 0 0
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Why studying metric graphs?

Modeling structures where only one spatial direction is important.

0.¢]

A « fat graph » and the underlying metric graph
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An application: atomtronics

m A boson! is a particle with integer spin.

THere we will consider composite bosons, like atoms.
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An application: atomtronics

A boson! is a particle with integer spin.

m When identical bosons are cooled down to a temperature very close
to absolute zero, they occupy a unique lowest energy quantum state.

This phenomenon is known at Bose-Einstein condensation.

This is really remarkable: macroscopic quantum phenomenon!

Since 2000: emergence of atomtronics, which studies circuits guiding
the propagation of ultracold atoms.

IHere we will consider composite bosons, like atoms.

Damien Galant



Metric graphs Ground states
oo | sEssEssssss}]

The minimization problem

m We model the circuit in which the condensate is confined by a metric
graph G.
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The minimization problem

m We model the circuit in which the condensate is confined by a metric
graph G.

m We want to know what will be the common quantum state of a
condensate confined in G for a given “quantity of matter” .

m We work on the space

Hjt(g) = {u :G6—R ) u is continuous, u, v’ € L2(g),/g lu? = M}
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The minimization problem

m We model the circuit in which the condensate is confined by a metric
graph G.

m We want to know what will be the common quantum state of a
condensate confined in G for a given “quantity of matter” .

m We work on the space
HA(G) = {u :G—R ) u is continuous, u, v’ € LZ(g),/g lu> = ,u}
and we consider the energy minimization problem

1 1
nf o [l [ up,
ueHL(9) 2 Jg pJg

where 2 < p <6

Damien Galant



Metric graphs Ground states
oo | sEssEssssss}]

The minimization problem

m We model the circuit in which the condensate is confined by a metric
graph G.

m We want to know what will be the common quantum state of a
condensate confined in G for a given “quantity of matter” .

m We work on the space
HA(G) = {u :G—R ) u is continuous, u, v’ € LZ(g),/g lu> = ,u}
and we consider the energy minimization problem

1 1
nf o [l [ up,
ueHL(9) 2 Jg pJg

where 2 < p < 6 (Bose-Einstein: p = 4).
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Infimum vs minimum

Then

inff =0
R

but the infimum is not attained (i.e. is not a minimum).
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The differential system

If a function u € Hi(g) minimizes the energy functional under the mass
constraint, there exists a constant A > 0 such that u is a solution of the
differential system
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The differential system

If a function u € H;(Q) minimizes the energy functional under the mass
constraint, there exists a constant A > 0 such that u is a solution of the
differential system

u" + |ulP~2u = Au on each edge e of G,

u is continuous for every vertex v of G,
du

Z —(v)=0 for every vertex v of G,

e-v dXe

where the symbol e > vV means that the sum ranges of all edges of vertex

v and where C‘Ij—)i(v) is the outgoing derivative of u at V.
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The differential system

If a function u € H;(Q) minimizes the energy functional under the mass
constraint, there exists a constant A > 0 such that u is a solution of the
differential system

u" + |ulP~2u = Au on each edge e of G,

u is continuous for every vertex v of G, (NLS)
d

Z —U(V) =0 for every vertex v of G,

e-v dXe

where the symbol e > vV means that the sum ranges of all edges of vertex

v and where C‘Ij—)i(v) is the outgoing derivative of u at V.
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The real line: G =R

Su(R) = {#pu(x +2) | a € R}

where the soliton ¢,, is the unique strictly positive, even, and of mass
solution to an equation of the form

u’ 4 [ulP~?u = Au.
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The halfline: G =R™ = [0, +o0]

SN(R+) = {:EQOQM(X)‘F&}

Solutions are half-solitons: no more translations!
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The positive solution on the 3-star graph
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The positive solution on the 5-star graph
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A continuous family of solutions on the 4-star graph
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m The « ground state » energy level is given by
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m The « ground state » energy level is given by
1 1
c,(G) = inf —/ u'2——/ ulP.
w0)= inf o [ L

m A ground state is a function u € Hﬁ(g) with level ¢,(G). Itis a
solution of the differential system (NLS).
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Two energy levels

m The « ground state » energy level is given by
@)= inf 5 [P [ lur
= in - ulP.
. ueHL(G 2 p G

m A ground state is a function u € Hﬁ(g) with level ¢,(G). Itis a
solution of the differential system (NLS).

m We can also consider the minimal level attained by the solutions of

(NLS):
1
= — P'
Uy,( ueglf 2 / | P /g ‘U|
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Two energy levels

m The « ground state » energy level is given by
@)= inf 5 [P [ lur
= in - ulP.
. ueHL(G 2 p G

m A ground state is a function u € Hﬁ(g) with level ¢,(G). Itis a
solution of the differential system (NLS).

m We can also consider the minimal level attained by the solutions of

(NLS):
1
= — P'
JM( ueglf 2 / | P /g ‘U|

® A minimal action solution of the problem is a solution v € H;(g) of
the differential problem (NLS) of level 0,(G).
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An example: star graphs

The level of the mass u soliton on the real line is given by

1 1
Su = §/g|90;¢|2 - ;/g ’90u|p-

For a N-star graph with N > 3, we have

N
su = cu(9) < ou(9) = 5 Su-
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Four cases

An analysis shows that four cases are possible:

Al) ¢,(G) = 0,(G) and both infima are attained;
A2) ¢,(G) = 0,(G) and neither infima is attained;
B1) ¢u(G) < 0u(G), 0,(G) is attained but not ¢,(G);
B2) ¢,(G) < 04(G) and neither infima is attained.
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Four cases

An analysis shows that four cases are possible:

c.(G) = 0,(G) and both infima are attained;
(9) (G) and neither infima is attained;
(G) < 0u(G), 0,(G) is attained but not ¢,(G);
(9) < ou(9)

and neither infima is attained.

Question

Are those four cases really possible for metric graphs?
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Answer to the question

Theorem (De Coster, Dovetta, G., Serra (to appear))

For every p € ]2,6[, every i > 0, and every choice of alternative between

Al, A2, Bl, B2, there exists a metric graph G where this alternative
occurs.
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Overviews of the subject

Adami R., Serra E., Tilli P. Nonlinear dynamics on branched structures
and networks https://arxiv.org/abs/1705.00529 (2017)

Kairzhan A., Noja D., Pelinovsky D. Standing waves on quantum
graphs J. Phys. A: Math. Theor. 55 243001 (2022)
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Videos

Adami R. Ground states of the Nonlinear Schrodinger Equation on
Graphs: an overview (Lisbon WADE)
https://www.youtube.com/watch?v=G-FcnRVvoos (2020)

Carl Wieman Nobel Lecture https:

//www.nobelprize.org/prizes/physics/2001/wieman/lecture/
(2001)

Eric Cornell Nobel Lecture https:

//www.nobelprize.org/prizes/physics/2001/cornell/lecture
(2001)

Wolfgang Ketterle Nobel Lecture https://www.nobelprize.org/p
rizes/physics/2001/ketterle/lecture/ (2001)
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Case B2
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